

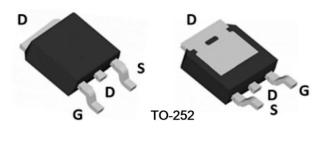
DESCRIPTION

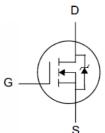
The AM50N10 is available in TO-252 Package

BVDSS	RDSON	ID
100V	$17 m\Omega$	50A

APPLICATION

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply


ORDERING INFORMATION


Package Type	Part Number			
TO-252	Ľ	AM50N10DR		
SPQ: 2,500pcs/Reel	D	AM50N10DVR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				

FEATURE

- R_{DS(ON),typ}.=17 Ω@V_{GS}=10V
- R_{DS(ON),typ.}=21.5 Ω@V_{GS}=4.5V
- Low RDS(on)
- Extremely low switching loss
- Excellent stability and uniformity
- Fast switching and soft recovery

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise specified.

Parameter		Symbol	Value	Unit	
Drain-source Voltage		V _{DS}	100	V	
Gate-source Voltage	Gate-source Voltage		±20	V	
Drain Current	T _A =25°C		50	А	
	T _C =100°C	- I _D	28.5		
Pulsed Drain Current ⁽¹⁾			180	Α	
Avalanche energy ⁽²⁾		EAS	81	mJ	
Total Device Dissipation (3)	T _A =25°C	D	72	W	
Total Power Dissipation ⁽³⁾	Tc=100°C	- P _D	28.8		
Junction and Storage Temperature Range		T_J , T_STG	-55~+150	°C	

THERMAL RESISTANCE

Parameter			Тур.	Max.	Unit
Thermal Resistance Junction-to-Ambient (4)	t≤10S		15	20	
Thermal Resistance Junction-to-Ambient (4)	Steady-State	Reja	40	50	°C/W
Thermal Resistance Junction-to-Case	Steady-State	Rejc	1.35	1.7	

(1) Repetitive rating; pulse width limited by max. junction temperature.

(2) V_{DD} =50V, V_{GS} =10V, L=5mH, I_{AS}=5.7A.

(3) Pd is based on max. junction temperature, using junction-case thermal resistance.

(4) The value of R_{θJA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation PDSM is based on R_{θJA} t≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

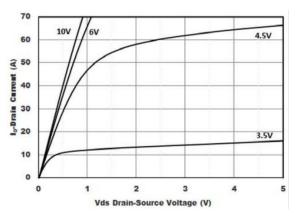
ELECTRICAL CHARACTERISTICS

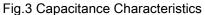
$T_A = 25^{\circ}C$, unless otherwise specified.

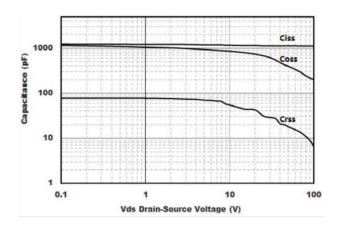
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Static Parameter						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =250µA	100			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =100, V _{GS} =0V			1	μA
Gate-Body Leakage Current	Igss	V _{GS} = ±20V, V _{DS} =0V			±100	nA
Gate Threshold Voltage	V _{GS (th)}	V _{DS} = V _{GS} , I _D =250μA	1	1.8	3	V
Otatia Davia Ozora Oz Daviatarea	D	V _{GS} = 10V, I _D =20A		14	17	mΩ
Static Drain-Source On-Resistance	Rds(on)	V _{GS} = 4.5V, I _D =20A		17	21.5	mΩ
Diode Forward Voltage	V _{SD}	Is=20A, V _{GS} =0V			1.3	V
Maximum Body-Diode Continuous Current	ls				45	А
Gate resistance	R _G	f= 1 MHz, Open drain		1		Ω
Dynamic CHARACTERISTICS			1	1		
Input Capacitance	Ciss	ss V _{GS} =0V,		1135		
Output Capacitance	C _{oss}	V _{DS} =50V,		399		pF
Reverse Transfer Capacitance	Crss	f=1MHz		18		
Switching CHARACTERISTICS						
Total Gate Charge	Qg			16		nC
Gate-Source Charge	Qgs	V_{GS} =10V,		5.6		
Gate-Drain Charge	Qgd	V _{DS} =50V, I _D =25A		2.4		
Reverse Recovery Chrage	Qrr			42		
Reverse Recovery Time	trr	l⊧=20A, di/dt=100A/us		39.8		
Turn-on Delay Time	t _{D(on)}			39.2		
Turn-on Rise Time	tr	V _{GS} =10V, V _{DD} =50V,		11		ns
Turn-off Delay Time	t _{D(off)}	ID=25A R _{GEN} =2.2Ω		53.2		
Turn-off fall Time	tf			15.8]

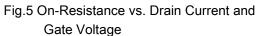
(1) Repetitive rating; pulse width limited by max. junction temperature.

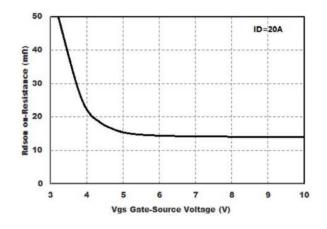
(2) V_{DD} =50V, V_{GS} =10V, L=5mH, I_{AS}=5.7A.

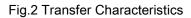

(3) Pd is based on max. junction temperature, using junction-case thermal resistance.

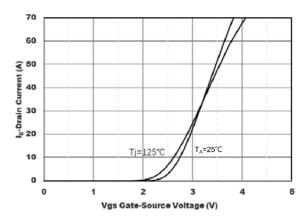

(4) The value of R_{θJA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation PDSM is based on R_{θJA} t≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

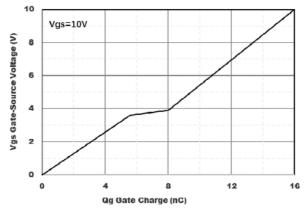


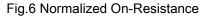

TYPICAL PERFORMANCE CHARACTERISTICS

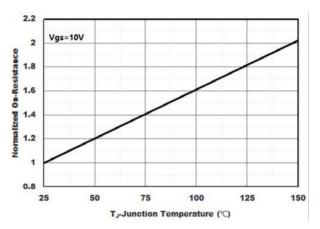

Fig.1 Output Characteristics









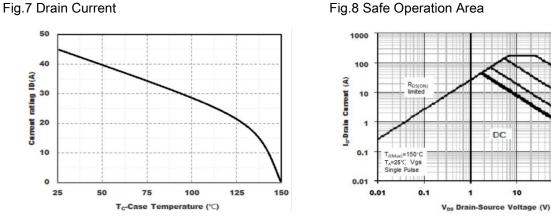
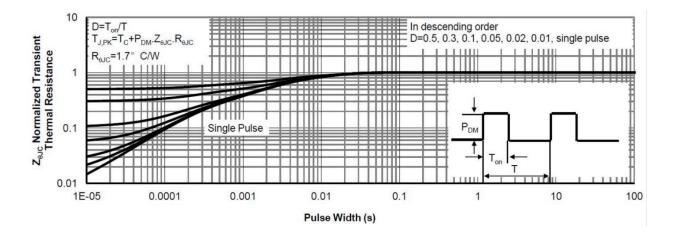


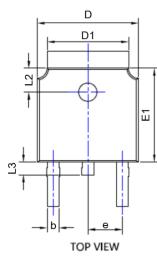
10us

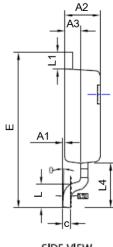
ms

100

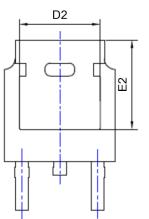
1000

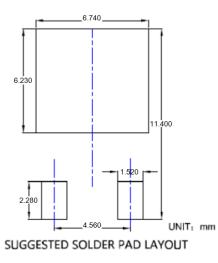




Fig.9 Normalized Maximum Transient Thermal Impedance



PACKAGE INFORMATION


Dimension in TO-252 (Unit: mm)



SIDE VIEW

Symbol	Min.	Max.	
A1	0.000	0.200	
A2	2.200	2.400	
A3	0.900	1.100	
b	0.660	0.860	
с	0.460	0.580	
D	6.500	6.700	
D1	5.150	5.450	
D2	4.600	4.950	
E	10.100	10.300	
E1	6.100	6.200	
E2	5.300	5.450	
е	2.286	BSC	
L	1.250	1.750	
L1	0.900	1.270	
L2	1.400	1.900	
L3	0.600	1.000	
L4	2.900REF		
θ	0	10	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.