DESCRIPTION

The A4732 is a Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) double – pole double-throw (DPDT) Analog Switch featuring an On-Resistance of 6 ohm at Vcc=3V and a Low On Capacitance 7pf Typical.

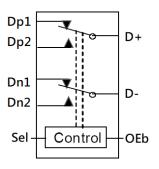
The A4732 is compatible with the requirements of USB2.0 and the wide bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to channel crosstalk also minimizes interference. Break-before-make function for both parts eliminates signal disruption during switching from preventing both switches being enabled simultaneously.

The A4732 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC}=0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

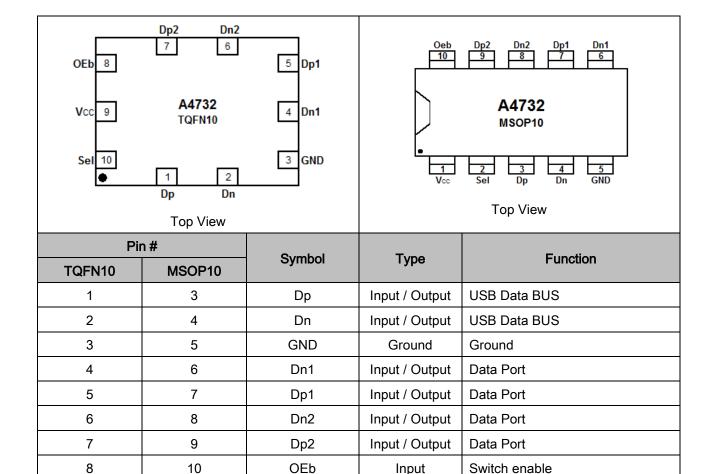
The A4732 is available in TQFN10(1.4x1.8) and MSOP10 packages.

ORDERING INFORMATION

Package Type	Part Number			
TQFN10	TO10	A4732TQ10R		
SPQ: 4,000pcs/Reel	TQ10	A4732TQ10VR		
MSOP10	MS10	A4732MS10R		
SPQ: 4,000pcs/Reel	IVISTU	A4732MS10VR		
Note	V: Halogen	free Package		
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Wide Power Supply Range: 1.8V to 5.5V
- Low On Capacitance 7pF (typ.)
- Low On Resistance 6Ω (typ.)
- High Bandwidth (-3db): 550MHz
- Low Power Consumption: 1uA Maximum
- ESD: pass 3KV HBM test
- Over voltage tolerance (OVT) on all USB ports up to 5.25V without external components
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Operation Temperature Range: -40°C to 85°C
- Available in TQFN10(1.4x1.8) and MSOP10
 Packages


APPLICATION

- Cell phone
- PDAs
- Digital camera
- Notebook
- LCD Monitor
- TV
- SET-TOP BOX

TYPICAL APPLICATION

PIN DESCRIPTION

FUNCTION TABLE

9

10

OEb	Sel	Function
1	X	Disconnect
0	0	Dp, Dn=Dp1, Dn1
0	1	Dp, Dn=Dp2, Dn2

 V_{CC}

Sel

PWR

Input

Power Supply

Switch select

X =Don't care

1

2

ABSOLUTE MAXIMUM RATINGS

Vcc, DC Supply Voltage		-0.5V ~ 5.5V
Dpn/Dnn/Dp/Dn, DC Switch Voltage	-0.5V ~ 5.25V	
V _{OEb} / V _{Sel} , DC Input Voltage		-0.5V ~ V _{CC}
I _(Dpn/Dnn/Dp/Dn) , Continuous Current		-100mA
IPEAK(Dpn/Dnn/Dp/Dn), Peak CurrentNOTE1		+150mA
T _A , Operating Temperature Range		-40°C~ +85°C
T _{STG} , Storage Temperature		-65°C~ +150°C
ESD, Human Body Model, JEDEC: JESD22-A114	I/O to GND	3kV

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Pulsed at 1ms, 50% duty circle

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V _{CC}	1.8	5.5	V
Control Input Voltage (Sel, OEb)NOTE2	Vcntrl	0	Vcc	V
Operating Temperature	TA	-40	+85	°C

NOTE2: The control input must be held HIGH or LOW and it must not float.

ELECTRICAL CHARACTERISTICS

All typical value are for 1.8 to 5.5V at T_A=25°C upless otherwise specified

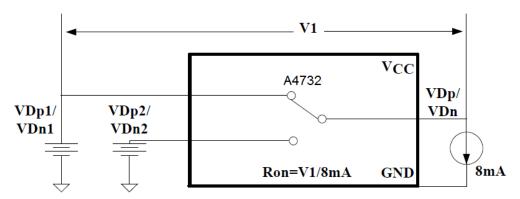
Parameter	Symbol	Conditions	Vcc (V)	Min.	Typ. ⁽²⁾	Max.	Unit
Analog Switch							
Analog Signal Range	V _{Pn} /V _{Nn} /V _p /V _n	-40°C to +85°C		0	-	Vcc	V
		V _{SW} =0.4V,					Ω
On-Resistance ^{NOTE3}	Ron	I _{ON} =-8mA	3.0	-	6	10	
		Test Circuit 1					
On Desistance Match		V _{SW} =0.4V,					
On-Resistance Match	ΔRon	I _{ON} =-8mA	3.0	-	0.15	0.6	Ω
Between Channels ^{NOTE4}		Test Circuit 1					
Current							
Source Off Leakage		$V_{CC}=3.6V, V_{p}/V_{n}=3$.3V/0.3V	4	-	1	uA
Current	I _{Pn} / N _{n (OFF)}	$V_{Pn}/V_{Nn} = 0.3V/3.3V$,	-1			
Channel on Leakage		V _{CC} =3.6V, V _p /V _n =3	.3V/0.3V	-1	-	1	uA
Current	Pn / Nn (ON)	V _{Pn/} V _{Nn} =3.3V/0.3V	,				
POWER OFF Leakage		V _{SW} =0V to 3.6V	0	-1	-	1	uA
Current	loff	-40°C to +85°C					
0 :		Vcontrol=0 or Vcc,	3.0	-	-	1	uA
Quiescent Supply Current	Icc	I _{OUT} =0					
Increase in Icc Current Per		Vcontrol=2.6V	4.0			40	uA
Control Voltage and Vcc	Ісст	-40°C to +85°C	4.3	-			
	. ,	Vsw=0V to Vcc	0.0			1	uA
Input Leakage Current	I _{OEb} / _{Sel}	-40°C to +85°C	3.0	-			
Digital I/O							
Input Voltage High	ViH	-40°C to +85°C	1.8 to 5.5	1.6	-	-	V
Input Voltage Low	VıL	-40°C to +85°C	1.8 to 5.5	-	-	0.5	V

NOTE2: Typical characteristics are at +25°C

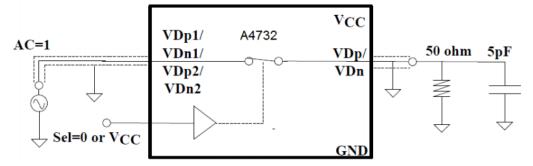
NOTE3: Measured by the voltage drop between Dpn/Dnn and Dp/Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (Dpn/Dnn and Dp/Dn ports).

NOTE4: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$, between Dp and Dn .

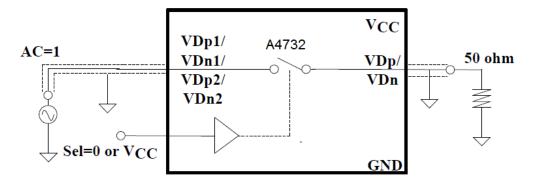
All typical value are for V_{CC} =1.8 to 5.5V at T_A =25°C, unless otherwise specified.

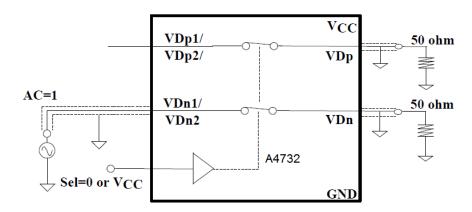

Parameter	Symbol	Conditions	Vcc (V)	Min.	Typ. ⁽²⁾	Max.	Unit
DRIVER CHARACTERISTICS							
		R _L =50Ω, C _L =10pF,					
Turn-On Time	ton	V _{SW} =0.8V	3.3	-	20		ns
		Test Circuit 5					
		R _L =50Ω, C _L =10pF,					
Turn-Off Time	t _{OFF}	V _{SW} =0.8V	3.3	-	15		ns
		Test Circuit 5					
Brook Defere		R _L =50Ω, C _L =10pF,					
Break-Before- Make Time	tввм	V _{SW} =0.8V	3.3		4		ns
Make Time		Test Circuit 7					
Dranagation Dalay	t _{PD}	R _L =50Ω, C _L =10pF	3.3	-	0.35	-	ns
Propagation Delay		Test Circuit 8					
CAPACITANCE							
Charge Injection		V _G =GND, C _L =1.0nF, R	k _G =0Ω				
Select Input to	Q	Q=C _L x V _{OUT}		-	11	-	рC
Common I/O		Test Circuit 6					
ON Capacitance	Con	OEb=0V, f=250MHz		-	7	-	pF
APPLICATION CHARAC	CTERISTICS						
2dD Dandwidth	f _{3dB}	R _L =50Ω, C _L =pF	3.0 to 3.6	-	550	-	
-3dB Bandwidth		Test Circuit 2					MHz
Off Isolation ^{NOTE5}	Viso	R _L =50Ω, C _L =10pF	3.3		0.5		٩D
		Test Circuit 3			-35	_	dB
Channel argestalls	V	R _L =50Ω, f=250MHz	3.3		40		4D
Channel crosstalk	X _{TALK} Test	Test Circuit 4		-	-40	-	dB

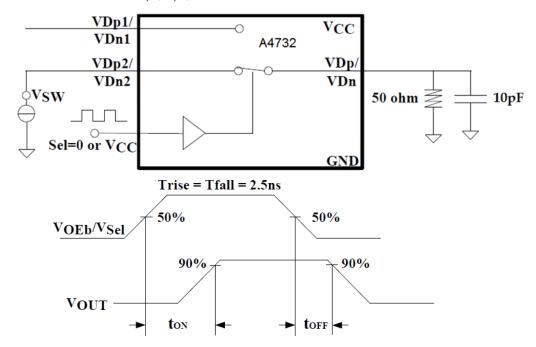
NOTE2: Typical characteristics are at 25°C

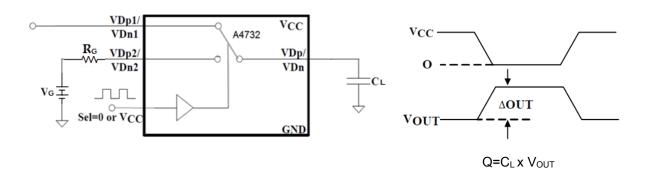

NOTE5: Off Channel Isolation = $20log_{10} [(V_{P1}VP2})/V_P]$ or $20log_{10} [(V_{N1}NN2})/V_N]$

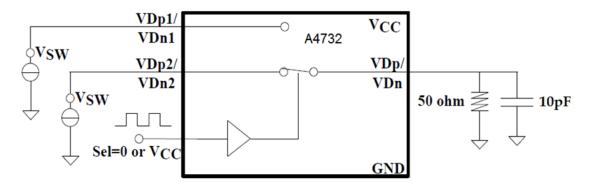
TEST CIRCUIT

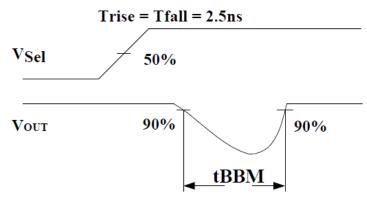

1. Test Circuit for On Resistance, Ron


2. Test Circuit for Bandwidth, f_{3dB}

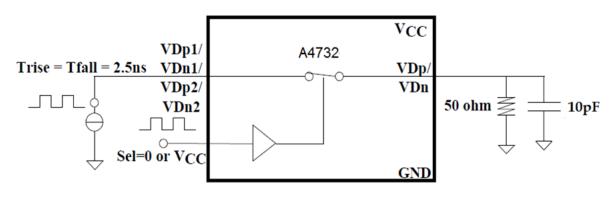

3. Test Circuit for Off Isolation, Viso

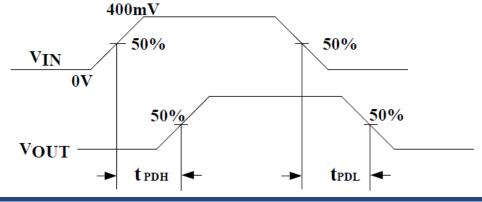

4. Test Circuit for Crosstalk, XTALK

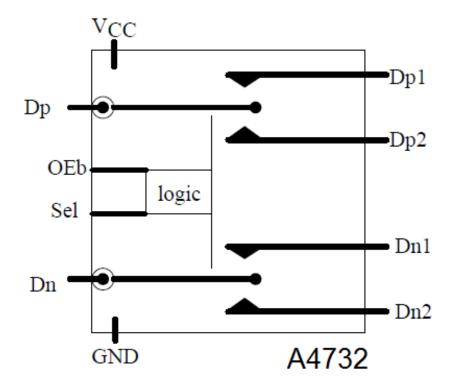

5. Test Circuit for Switch Times, ton, toff



6. Test Circuit for Charge Injection, Q




7. Test Circuit for Break-Before-Make Time Delay, tbbm



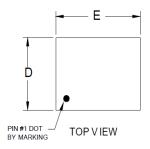
8. Test Circuit for Propagation Delay, tpd

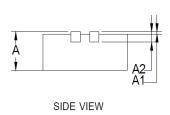
BLOCK DIAGRAM

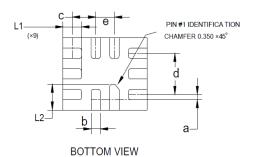
DETAILED INFORMATION

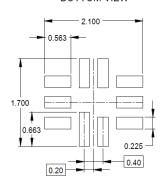
Meeting USB 2.0 V_{BUS} Short Requirements

(1) Power-Off Protection

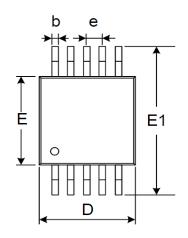

For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The A4732 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (Dp, Dn).

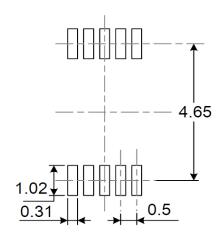

(2) Power-On Protection


The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V_{CC} rail during the over-voltage event so current remains within the safe operating range.


PACKAGE INFORMATION

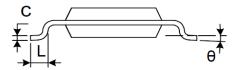
Dimension in TQFN10 (Unit: mm)





RECOMMENDED LAND PATTERN

Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
А	0.500	0.600	0.020	0.024	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008	REF	
а	0.050	0.150	0.002	0.006	
b	0.150	0.250	0.006	0.010	
С	0.450	0.550	0.018	0.022	
d	0.800	REF	0.031 REF		
D	1.350	1.450	0.053	0.057	
Е	1.750	1.850	0.069	0.073	
е	0.400	TYP	0.016 TYP		
L1	0.350	0.450	0.014	0.018	
L2	0.450	0.550	0.018	0.022	


Dimension in MSOP10 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Cymahal	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.028	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.500	BSC	0.020 BSC		
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.