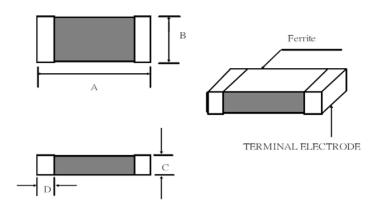
•FEATURE

- 1. Monolithic structure for high reliability
- 2. Unified dimensions are perfect for automatic mounting
- 3. Closed magnetic circuit avoids cross talk and it's suitable for high density printed circuit boards
- 4. High Current Type

r

APPLICATION

- 1. Personal computers, notebook computers, PDAs
- 2. Peripheral equipment
- 3. Others electronic appliances


• ORDERING INFORMATION

 WCB201209
 -4R7
 T

 PN
 Inductance
 K :±10%

 M :±20%

•SHAPE AND DIMENSION

SPECIFICATION

Dimension in mm(in inches)

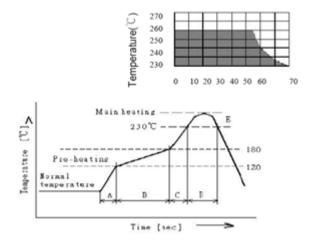
TYPE	Α	В	С	D
201209 (0805)	2.0±0.20(0.079±0.008)	1.25±0.20(0.049±0.008)	0.9±0.20(0.035±0.008)	0.5±0.30
201609 (0806)	2.0±0.20(0.079±0.008)	1.60±0.20(0.063±0.008)	0.9±0.20(0.035±0.008)	0.5±0.30
252009 (1008)	2.5±0.20(0.098±0.008)	2.00±0.20(0.079±0.008)	0.9±0.20(0.035±0.008)	0.6±0.30

Note: Test equipment: HP 4291A Impedance analyzer

•ELECTRICAL CHARACTERISTICS

PART NUMBER	Inductance (μH)	Test Freq.	Self-resonant Frequency (MHz) min.	DCR (Ω)	IDC (mA) max.
WCB201209-R47ML	0.47	1MHz, 250mV	100	0.10±25%	1100
WCB201209-R68ML	0.68	1MHz, 250mV	100	0.12±25%	1000
WCB201209-R82ML	0.82	1MHz, 250mV	90	0.14±25%	900
WCB201209-1R0ML	1.0	1MHz, 250mV	90	0.16±25%	800
WCB201209-1R2ML	1.2	1MHz, 250mV	80	0.16±25%	800
WCB201209-1R5ML	1.5	1MHz, 250mV	70	0.22±25%	700
WCB201209-1R8ML	1.8	1MHz, 250mV	60	0.22±25%	700
WCB201209-2R2ML	2.2	1MHz, 250mV	50	0.25±25%	600
WCB201209-3R3ML	3.3	1MHz, 250mV	40	0.22±25%	500
WCB201209-4R7ML	4.7	1MHz, 250mV	30	0.30±25%	500

PART NUMBER	Inductance (µH)	Test Freq.	SRF (MHz) min.	DCR (Ω)	IDC (mA) max.
WCB201609-R47ML	0.47	1MHz, 250mV	100	0.14±30%	1500
WCB201609-R68ML	0.68	1MHz, 250mV	90	0.15±30%	1500
WCB201609-R82ML	0.82	1MHz, 250mV	80	0.16±30%	1500
WCB201609-1R0ML	1.0	1MHz, 250mV	60	0.16±30%	1400
WCB201609-1R2ML	1.2	1MHz, 250mV	60	0.16±30%	1400
WCB201609-1R5ML	1.5	1MHz, 250mV	50	0.20±30%	1200
WCB201609-1R8ML	1.8	1MHz, 250mV	50	0.20±30%	1200
WCB201609-2R2ML	2.2	1MHz, 250mV	40	0.22±30%	1200
WCB201609-3R3ML	3.3	1MHz, 250mV	30	0.24±30%	1100
WCB201609-4R7ML	4.7	1MHz, 250mV	20	0.30±30%	1100


PART NUMBER	Inductance (μH)	Test Freq.	SRF (MHz) min.	DCR (Ω)	IDC (mA) max.
WCB252009-R47ML	0.47	1MHz, 250mV	100	0.07±25%	1800
WCB252009-R68ML	0.68	1MHz, 250mV	90	0.09±25%	1700
WCB252009-R82ML	0.82	1MHz, 250mV	80	0.10±25%	1700
WCB252009-1R0ML	1.0	1MHz, 250mV	60	0.11±25%	1600
WCB252009-1R2ML	1.2	1MHz, 250mV	60	0.11±25%	1600
WCB252009-1R5ML	1.5	1MHz, 250mV	50	0.13±25%	1500
WCB252009-1R8ML	1.8	1MHz, 250mV	50	0.13±25%	1500
WCB252009-2R2ML	2.2	1MHz, 250mV	40	0.17±25%	1300
WCB252009-3R3ML	3.3	1MHz, 250mV	30	0.16±25%	1200
WCB252009-4R7ML	4.7	1MHz, 250mV	25	0.20±25%	1100

•RELIABILITY TEST

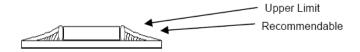
1. REFLOW SOLDERING CONDITIONS

Pre-heating should be in such a way that the temperature difference between solder and ferrite surface is limited to 150°C max. Also cooling into solvent after soldering should be in such a way that the temperature difference is limited to 100°C max.

Unenough pre-heating may cause cracks on the ferrite, resulting in the deterioration of product quality. Products should be soldered within the following allowable range indicated by the slanted line. The excessive soldering conditions may cause the corrosion of the electrode, When soldering is repeated, allowable time is the accumulated time.

Α	Slope of temp. rise	1 to 5	°C/sec
B Heat time		50 to 150	
В	Heat temperature	120 to 180	°C
С	Slope of temp. rise	1 to 5	°C/sec
D	Time over 230°C	90 to 120	sec
Е	Peak temperature	255 to 260	°C
	Peak hold time	10 max.	sec
No. of mounting		3	time

1.1 Reworking with soldering iron


Preheating	150°C, Iminute	
Tip Temperature	280°C	
Soldering iron output	3seconds max.	
Soldering iron output	30w max.	
End of soldering iron	∮ 3min max.	

• Reworking should be limited to only one time.

Note: Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the ferrite material due to the thermal shock.

1.2 Solder Volume

Solder shall be used not to be exceed the upper limits as shown below.

Accordingly increasing the solder volume, the mechanical stress to product is also increased.

Exceeding solder volume may cause the failure of mechanical or electrical performance.

2. IMPEDANCE

2.1 Impedance shall be measured with HP-4291A impedance analyzer or equivalent system

3. MECHANICAL CHARACTERISTICS

ITEM	REWUIREMNTS	TEST CONDITIONS
Terminal Strength	The terminal electrode and the ferrite must not	After soldering a lead wire to a terminal
	be damaged by the force applied on the right	electrode, apply a load power in the
	conditions.	arrow direction.
		→ W(kgf)
Flexure Strength	The terminal electrode and the ferrite must not	After soldering a chip lead to a test
	be damaged by the force applied on the right	substrate, bend the substrate by 2mm
	conditions.	and then return.
Body Strength	The ferrite shall not be damaged by forces	RO.5mm
	applied on the right specification≥1.0W(kgf)	
		A: 0.9(mm) 0.04(inches)
Resistance to Solder	The chips must have no cracks. More than	Preheat Temp: 100 to 150°C
Heat	75% of the terminal electrode must be covered	Preheat Time: 1 minute
	with new solder. Impedance & RDC shall be	Solder Temp: 275±5%
	within ±30% of the initial value. Inductance:	Dipping Time: 5±1sec
	within ±20% of initial value.	
Solder Ability	More than 90% of the terminal electrodes shall	Preheat Temp: 100 to 150°C
	be covered with new solder.	Preheat Time: 1 minute
		Solder Temp: 215±5%
		Dipping Time: 3±1sec

4. RELIABILITY AND TEST CONDITIONS

4.1 HIGH TEMPERATURE RESISTANCE

- a. Performance specification
 - 1. Appearance: no mechanical damage
 - 2. Impedance shall be with ±30% of the initial value
- b. Test condition
 - 1. Temperature 125°C±2°C
 - 2. Applied current: Rated current
 - 3. Testing time: 1008±12hrs (maximum value)
 - 4. Measurement: After placing at room ambient temperature for 24 hours minimum

4.2 HUMIDITY RESISTANCE

- a. Performance specification
 - 1. Appearance: no mechanical damage
 - 2. Impedance shall be with ±30% of the initial value
- b. Test condition

Humidity: 90 to 95% RH
 Temperature: 40±2°C

3. Applied current: Rated current (maximum value)

4. Testing time: 1008±12hours

5. Measurement: After placing at room ambient temperature for 24 hours minimum

4.3 TEMPERATURE CYCLE

- a. Performance specification
 - 1. Appearance: no mechanical damage
 - 2. Impedance shall be with ±30% of the initial value
- b. Test condition
 - 1. Temperature -55°C, +125°C kept stabilized for 30 minutes each
 - 2. Cycle: 100 cycles
 - 3. Measurement: After placing for 24hours minimum at room ambient temperature
 - 4. step1. -55°C temp±3°C 30±3 minutes

step2. Room temperature 2 to 5 minutes

step3. +125°C temp±2°C 30±3 minutes

step4. Room temperature 2 to 5 minutes

4.4 LOW TEMPERATURE STORAGE LIFE TEST

- a. Performance specification
 - 1. Appearance: no mechanical damage
 - 2. Impedance shall be with ±30% of the initial value
- b. Test condition

1.Temperature: -55°C±2°C

2.Testing time: 1008±12hours

3. Measurement: After placing for 24 hours minimum at room ambient temperature

5. STORAGE

- 5.1 The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. Packages must be stored at 40°C or less and 70% RH or less.
- 5.2 The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust or harmful gas (hydrogen chloride, sulfurous acid gas or hydrogen sulfide).
- 5.3 Packaging material may be deformed if packages are stored where they are exposed to heat or direct sunlight.
- 5.4 Minimum package such as polyvinyl heat seal packages shall not be opened until just before they are used. If opened, use the reels as soon as possible.
- 5.5 Solderability specified in composite specification shall be for 6 months from the date of delivery on condition that they are stored at the environment specified clause 5-1 & 5-2.

For those parts which passed more than 6 months shall be checked solderability before used.